Modern Technology – a Lifesaving Backstop in Aviation

Rocky Mountain Aircraft had staff attending Heli-expo in Anaheim this week.

Why would a company specializing in Twin Otter and other similar twin turbine aircraft attend a rotorcraft convention you may wonder? Well, plenty of equipment designed specifically for rotorcraft can be a great fit for the special mission Twin Otter conversions that Rocky Mountain Aircraft excels at. FLIR systems multi-mission audio, tactical radio suites, night vision cockpits for example, that started off exclusively for rotorcraft have been STC’d into Twin Otters.

Garmin Integrated Flight Display
Installed Garmin Integrated Flight Display

There was a lot of talk and speculation at the convention about the tragic crash that killed Kobe Bryant, his daughter, and seven others. While the cause of the accident is still under investigation, the lack of a terrain awareness system (TAWS) on the helicopter could have been significant.

The TAWS systems, mandated for the majority of commercial aircraft, are tried and trusted technology credited with saving hundreds of lives. It is also comparatively cheap to retrofit. A California congressman has now introduced a bill to make TAWS mandatory in all helicopters. What will it take before all aircraft owners and operators voluntarily carry out safety audits on their aircraft?

Universal Avionics Terrain Awareness (TAWS) Display
Universal Avionics Terrain Awareness (TAWS) Display

Modern avionics have made flying safer than ever, terrain awareness, traffic and collision avoidance systems, large graphical displays for situational awareness, real-time weather information have significantly reduced accident rates.

The latest generation of digital autopilots with their envelope protection, unusual attitude recovery, straight and level functions are so advanced compared to the old analog autopilots it’s like comparing a Sony Walkman to an iPhone 11. Automatic landing autopilots, in the case of pilot incapacitation, are now being introduced to the market.

While pilot training, proficiency, flying skills and good decision making along with a properly maintained aircraft are always going to be the primary safety feature of any flight. In the event of failure, modern technology should always be installed as the lifesaving backstop.

Garmin Product Announcements

Garmin Came out of the starting blocks strongly in 2020 with two big product announcements.

First was their fourth generation navigator, the GTN Xi series. Powerful dual-core processors boost the GTN Xi series graphical display capabilities — with faster zooming, panning, and map rendering on the display. With almost double the pixel count of its predecessor, the GTN Xi series features wider viewing angles and one of the highest-resolution displays ever offered in this class of avionics.

Image of Garmin - GTN-750Xi
GTN-750Xi

Within a week another product introduction. The GI 275 Bright, reliable, high-resolution touchscreen instruments that offer all-purpose digital upgrades from traditional round mechanical instruments. As your primary flight reference instrument, GI 275 features an integrated display to support all the essential readouts — attitude, altitude, airspeed, and heading. Configurable for a multitude of functions

Image of  Garmin - ADI with Autopilot Integration

ADI with Autopilot Integration

For select aircraft and glass cockpit systems, GI 275 can function as a standby flight instrument with MFD capability2 for mapping, traffic, weather and more

Image of Garmin -  MULTIFUNCTION DISPLAY
Multifunction Display
Image of Garmin- Animated Nexrad
Animated Nexrad

ANIMATED NEXRAD

When paired with an optional GDL® 69 SiriusXM® receiver, the MFD-configured GI 275 offers display capability for satellite weather coverage with graphical NEXRAD imagery.

Image showing Garmin - Wireless Data Streaming instrument
Wireless Data Streaming
Image of Garmin - Radar Altimeter
Radar Altimeter

RADAR ALTIMETER

For applications that require precise tracking of aircraft altitude above the terrain, GI 275 can provide display capability for select radar altimeters, including the Garmin GRA™ altimeter series.

WIRELESS DATA STREAMING

Use built-in wireless connectivity to share data between the GI 275 and compatible mobile apps. Import databases. Stream weather, traffic, attitude information, EIS and more4.

Image of Garmin - Moving Map
Moving Map
Image of Garmin -  traffic and weather mapping
Traffic and Weather

MOVING MAP

Within the MFD configuration, a dynamic moving map page offers views of terrain features, airports, airspace boundaries, navaids, flight plan routings and more.

TRAFFIC AND WEATHER

With select ADS-B “In” datalinks, GI 275 MFD pages will support subscription-free U.S. weather and traffic displays, including TargetTrend™ and TerminalTraffic™ technologies.

As an approved dealer for Garmin, Rocky Mountain Aircrafts Avionics team can get you set up with the right configuration to support your aviation needs. Contact Us to see how we can help.

Transitioning from Radar to ADS-B

What is ADS-B you ask;

  • Automatic in the sense that it operates without external stimulus (unlike radar)
  • Dependent in the sense that the surveillance information is derived from onboard systems
  • Surveillance in the sense that it’s primarily intended to provide surveillance information to other parties
  • Broadcast because it transmits to all listeners without knowing who those listeners are, there is no two-way communication

The capability of an aircraft to transmit ADS-B signals is called ADS-B OUT, the capability of an aircraft to receive ADS-B signals is called ADS-B IN. The Garmin GTX-335 is an example of an ADS-B OUT only transponder, while the GTX345 is ADS-B OUT and ADS-B IN.

ADSB-how-it-works for ADS-B - Transitioning from Radar
ADSB-how-it-works – from FAA

ADS-B data contains information about the identity, position, altitude, and velocity of the aircraft. The position and velocity information is derived from GNSS (GPS).

ADS-B is a surveillance technology whereby the aircraft broadcasts information about its identity, position, altitude, and velocity of the aircraft to any interested party. The position and velocity information is derived from GNSS (GPS).

TCAS

ADS-B is not intended to replace TCAS, although in the future it will augment TCAS. The TCAS algorithm currently only uses distance and altitude to calculate whether there is a conflict and to determine the best conflict resolution strategy. With the more accurate ADS-B position available to the system as well, the number of TCAS interrogations can be reduced (the surveillance radio frequencies are getting congested in some areas) and the performance of TCAS can be improved. A new standard for this hybrid approach was published in 2013.

It may also be possible to have a passive TCAS-like system that does not require active interrogation but is purely depending on ADS-B. Currently, a technical standard for a new Airborne Collision Avoidance System (ACAS, the generic name for TCAS) is being developed in a joint RTCA / EUROCAE committee (RTCA SC-147 / EUROCAE WG-75), which will take advantage of more data offered by ADS-B. This new standard will eventually replace TCAS II.

ATC

The purpose of ADS-B is not to replace ground-based ATC. It will change the way ATC is done. ADS-B IN will improve the situational awareness of pilots; they will have a display of accurate positions of other aircraft. New procedures will allow pilots to maintain separation from other aircraft in marginal Visual Meteorological Conditions (VMC), where they currently would often lose sight of other traffic. More advanced usage of ADS-B will be flight deck based interval management (FIM) where ATC will be able to instruct aircraft to ‘follow that plane XX seconds behind for landing on runway YY’.

ADS-B is not a replacement for all radars, although it will allow the number of radars to be reduced. For remote areas that currently do not have radar coverage because of the associated high costs, ADS-B will be a cost-effective alternative.

The display of ADS-B IN requires a compatible cockpit monitor. The Garmin GTN series of navigators can display ADS-B targets blended with TCAS whereas older models of navigators and MFDs will only display TCAS traffic. The Garmin GTX-345 contains a built-in Bluetooth transmitter that can broadcast ADS-B traffic information to a handheld cockpit display such as an IPAD.

Canadian Maintenance Organizations (AMO’s) are approved under a bilateral agreement between the FAA and Transport Canada to complete ADS-B installations and return n-registered aircraft to service.

Rocky Mountain Aircrafts Avionics team can keep you equipped to stay airborne in 2020. Contact Us.